
Notes on CSP

Will Guaraldi, et al

version 1.5 10/13/2006

Abstract

This document is a survey of the fundamentals of what we’ve covered
in the course up to this point.

The information in this document was culled from a variety of sources:
meetings with Professor Lieberherr, research papers we’ve been given to
read in class (CSG260), Wikipedia,

Recent versions of these notes can be found at:
http://www.ccs.neu.edu/home/guaraldi/csg260/

If you have any questions, comments, or find any issues, let Will know
by email sent to guaraldi at ccs dot neu dot edu.

Contents

1 What is CSP? 3
1.1 Boolean . 3

1.1.1 SAT . 3
1.1.2 One-in-three . 5

2 SAT Solving 6
2.1 Homework 2: Precise . 8
2.2 Homework 2: MAXMEAN and MAXMEAN* 10
2.3 Homework 3: MAXMEAN APPMEAN 14

1

Revision History

version 1.5 (10/13/2006) - wbg (major edits)
I added a TOC, moved the revision history to a new page, and significantly
expanded the sections on MAXMEAN, APPMEAN, and SAT Solvers.

version 1.1 (10/10/2006) - wbg (minor edits)
Fixed an exponent that was a 5 and should have been an s. Removed a line
from one of the itemized lists that was incomplete and shouldn’t have been
there. Moved the x = k/n to a better place in the APPMEAN explanation.

version 1.0 (10/10/2006) - wbg (major edits)
Made a bunch of changes based on Professor Lieberherr’s comments.

version 0.5 (10/08/2006) - wbg (major edits)
First write-up, csp information, precise, maxmean, and appmean.

2

CSP

/ \

/ \

continuous discrete

/ \

/ \

Boolean Other domains

/ \ / \

/ \ / \

SAT 1-in-3 ... Domain={1..9}

/ | \ \

/ | \ \

3-SAT | ... Sudoku

2-SAT

Figure 1: Sketch of CSP family

1 What is CSP?

Constraint Satisfiability Problems are problems that are formed by a series of
constraints which must be satisfied by an assignment formed of variables set to
values.

CSG260 has been concerned primarily with the section of the tree in figure

1 where the values are discrete (i.e. all whole numbers), the domain of values
is boolean, and the rank of the constraints is 3.

We talked briefly about CSP problems that are discrete where the domain
of values is not boolean. One such example of this is Sudoku. We spent some
time taking Sudoku and translating the problem so that it was discrete and the
domain of values was boolean.

This paper covers the section of the tree we’re primarily concerned with
along with SAT Solving algorithms.

1.1 Boolean

Boolean CSP is any CSP problem where the domain of values is boolean. For
any variable in the CSP, you can set it to either true (1) or false (0).

1.1.1 SAT

SAT is a subset of CSP problems where:

1. the constraints are formed by literals that are connected by logical or, and

2. the constraints are connected by logical and, and

3

3. the domain of values is 0, 1

SAT is important because many other NP problems can be converted to SAT
problems and solved using SAT Solvers. There are a variety of applications that
benefit from this: program verification, electronic design, automation, Bayesian
network evaluation, bioinformatics,

The following terms are used when talking about SAT:

• formula - A specific instance of a CSP problem. A formula consists of a
series of clauses.

• clause - A formula S is formed of clauses that are connected by logical
and. clauses refer specifically to SAT whereas constraints refer to any
CSP. For SAT, these two terms are interchangeable.

• literal - Clauses are formed of literals. A literal has a variable and is
either positive or negative.

• interpretation - An interpretation is a list of variable to value assign-
ments that solves the CSP.

• rank - Rank refers to the number of literals in a clause. For example:
Or(x1 x2 x3) rank 3
Or(x1) rank 1
Or(x y) rank 2

• weight - Sometimes the clauses we’re working with have a weight associ-
ated with them. For example:
Or3(x1 x2 x3) : 10 weight 10
Or1(x1) : 5 weight 5
Or2(x y) : 2 weight 2

Intuitively, a clause with a weight w is equivalent to having w of that
clause in the formula of weight 1.

• 3-SAT - A 3-SAT problem is a SAT problem where the clauses are re-
stricted to Rank 3 or less.

Some papers use the term “3-SAT” to refer to SAT problems where clauses
are of Rank 3, though some papers refer to this as Exact-3-SAT.

SAT problems are usually shown using Conjunctive Normal Form (CNF).
Examples of SAT in CNF:

X1 or X2 or !X13 or X4 or X10 AND

X21 or X22 or X23 AND

!X32 AND

X14 or !X33 AND ...

Wikipedia adds that all of the following formulas are valid CNF:

4

A or B

!A or (B or C)

(A or B) or (!B or C or !D) or (D or E)

(!B or C)

The following are NOT valid CNF:

!(B or C)

(A and B) or C

A and (B or (D and E))

In class, we’ve been using syntax like this:

Or(x1 x2 !x3) and

Or(x2) and

Or(x1 !x3)

or syntax like this where we explicitly specify the type of the constraints:

Or3(x1 x2 !x3) and

Or1(x2) and

Or2(x1 !x3)

2-SAT and 3-SAT are SAT problems of rank 2 and rank 3 respectively.
Any problem can be reduced to a 3-SAT problem by adding new variables.

1.1.2 One-in-three

In the one-in-three CSP problem, only one literal in a clause can be set to 1:

x1 + x2 + x3 = 1

x1 + x5 + x6 = 1

x2 + x8 = 1

...

In order to maintain the equality, only one of the literals in each clause can
be equal to 1—the others have to be equal to 0. For example, if x1 and x2 were
equal to 1, then we would have this:

x1=x2=1, x3=x5=x6=x8=0

x1 + x2 + x3 = 1 unsatisfied

x1 + x5 + x6 = 1 satisfied

x2 + x8 = 1 satisfied

...

In class, we’ve been using syntax for specifying one-in-three problems that
looks like this:

5

OneInThree(x1 x2 x3)

OneInThree(x1 x5 x6)

OneInTwo(x2 x8)

where the + and the = 1 are implied.

2 SAT Solving

SAT is the prototypical NP-complete problem. However, we can approximate
solutions that satisfy the maximum number of clauses in polynomial time.

This section covers some of the terminology, but it’s definitely a good idea
to read The Quest for Efficient Satisfiability Solvers because it covers all of this
in more depth.

SAT Solvers share various properties:

1. complete - A complete solver can find a solution to a SAT problem or
prove that no such solution exists.

2. incomplete - An incomplete solver can find a solution to a SAT problem,
but it can’t distinguish between there being no solution and the solver’s
inability to find it.

3. randomized algorithm - A randomized algorithm has a random ele-
ment. Running a solver that has a randomized algorithm on a solution
twice may not produce the same results. This is also referred to as a
stochastic algorithm.

4. deterministic algorithm - A deterministic algorithm has no random el-
ements. Running a solver that has a deterministic algorithm on a solution
multiple times will always produce the same result.

complete incomplete
randomized biased coin-flipping with MAXMEAN*

superresolution
deterministic superresolution, precise, MAXMEAN

MAXMEAN with superresolution
Terminology:

• MAXSAT - A MAXSAT algorithm produces an interpretation that sat-
isfies the maximum number of clauses in a SAT formula.

If the clauses have weight, then a MAX algorithm produces an interpreta-
tion that has the maximum weight of satisfied clauses in the SAT formula.

Similarly, a MAXCSP algorithm produces an interpretation that satisfies
the maximum number of constraints in a CSP formula.

• MAX-3-SAT - A MAX algorithm that operates on a 3-SAT problem.

6

• free variable - A free variable is a variable that is unassigned.

• decision - A decision is any time you assign a value to a free variable.

• conflicting clause - A clause that has all its literals assigned to 0.

• resolvent - A resolvent is a clause that’s generated by a resolution step.
For example if you had two clauses Or(a b) and Or(!b c) then the resolvent
would be Or(a c).

• variable ordering - The algorithm uses a suitable ordering of the free
variables to decide in which order to set them.

• value ordering - The algorithm looks at the values of a variable in order
to decide which value to try first.

7

2.1 Homework 2: Precise

Precise is a recursive algorithm that finds the maximum interpretation (i.e.
satisfying the maximum weight) of a given formula F.

Precise will return an interpretation I that satisfies the maximum weight of
the clauses in f.

The intuition for Precise is:

P(f)

if f has at least one unassigned variable x

P(f[x=1])

P(f[x=0])

However, this version of Precise will traverse the entire search tree of 2n

steps.
For Homework 2, we used a version of Precise that prunes sections of the

tree that we discover aren’t worth traversing.

Input: formula F, interpretation I, weight of unsatisfied clauses WUC

Output: interpretation I and weight of unsatisfied clauses WUC

Before calling Precise the first time, do these setup steps:

I = random assignment for all variables

WUC = total weight of unsatisfied clauses in F using I

Then call Precise:

I, WUC = Precise(F, I, WUC)

function Precise(F, I, WUC) returns I, WUC:

if F is empty (everything is satisfied or unsatisfied):

return I, WUC

v = variable in F

F’ = F[v=1]

I’ = I[v=1]

WUC’ = total weight of unsatisfied clauses in F’

if WUC’ < WUC:

I’, WUC’ = Precise(F’, I’, WUC’)

I = I’

WUC = WUC’

F’ = F[v=0]

I’ = I[v=0]

WUC’ = number of unsatisfied clauses in F’

8

if WUC’ < WUC:

I’, WUC’ = Precise(F’, I’, WUC’)

I = I’

WUC = WUC’

return I, WUC

9

2.2 Homework 2: MAXMEAN and MAXMEAN*

MAXMEAN and MAXMEAN* are defined in the paper Partial Satisfiability
SAT II. This paper covers large portions of it here, but you should refer to the
original paper for specifics.

MAXMEAN is a deterministic algorithm that uses value ordering to deter-
mine which value to assign a variable.

In this section, we use the following notation:

• S - S refers to a CSP formula. MAXMEAN works for SAT problems in
CNF as well as OneInThree problems.

• R - R refers to a relation of a constraint in a CSP problem. If you’re using
CSP problems of rank 3 or less, then it’s convenient to represent R as an
8-bit number (0 through 255) that specifies which rows of the truth table
for x, y, and z are satisfied. For example:

row x y z R (!x or y)

--- --------- --------------

1 0 0 0 1 <- satisfied

2 0 0 1 1 <- satisfied

3 0 1 0 1 <- satisfied

4 0 1 1 1 <- satisfied

5 1 0 0 0

6 1 0 1 0

7 1 1 0 1 <- satisfied

8 1 1 1 1 <- satisfied

The R here is binary number 11001111 which is 207 in decimal. So we
could refer to (!x or y) as R207.

MAXMEAN uses a function meannk (S) which takes k, n, and S as input
and returns the average fraction of satisfied clauses in S among all assignments
having exactly k ones.

There are two invariants for meannk (S):

• meann
−1(S) = meann0 (S), and

• meannn+1(S) = meannn(S)

Here’s the algorithm for maxmean(S):

10

maxmean(S) :
J := empty assignment

compute k such that:
meannk (S) = max 0 <= k′ <= n of meannk′ (S)

for all variables x in S do:
if meann−1

k−1(S[x = 1]) > meann−1
k (S[x = 0]) :

J [x] := 1, k := k − 1, S := S[x = 1]
else:

J [x] := 0, S := S[x = 0]

return J

where:

• S[x = 0] - The formula S reduced by the assignment x = 0.

• J - An assignment of variables to values.

• J [x] - Variable x in assignment J .

• meannk (S) - The average fraction of satisfied clauses in S among all as-
signments having exactly k ones out of n free variables.

meannk (S) is defined as:

meannk (S) =

m
∑

i=1

tRi
(S) SATn

k (Ri)

where:

• m - The number of clauses in S.

• Ri - A relation.

• tRi
(S) - The fraction of the clauses in S that are of relation R. For

example, if there are 10 claues in S and three of them are relation R5,
then tR5

would be 3
10 .

SATN
k (Ri) is defined as:

SATn
k (R) =

r(R)
∑

s=0

qs(R)

(

k
s

)((n−k)
r(R)−s

)

(

n
r(R)

)

where:

11

• qs(R) is the number of satisfying rows in the truth table of R which contain
s ones.

For example, if you had Or(!x y), then the truth table for the R for that
clause is:

row x y z R (!x or y)

--- --------- -----------

1 0 0 0 1

2 0 0 1 1

3 0 1 0 1

4 0 1 1 1

5 1 0 0 0

6 1 0 1 0

7 1 1 0 1

8 1 1 1 1

R is satisfied in rows 1, 2, 3, 4, 7, and 8 because those rows have values
for x and y that satisfy !x or y.

If s = 0, then q0(R) for this truth table would be 1 because row 1 is the
only row in the truth table that has zero 1s and is satisfied.

If s = 1, then q1(R) for this truth table would be 2 because rows 2 and 3
both contain one 1 and are satisfied.

If s = 2, then q2(R) for this truth table would be 2 because rows 4 and 7
both contain two 1s and are satisfied.

We don’t compute at s = 3 because R is of rank 2 (there are only two
literals) and SATn

k is the summation from s = 0 to r(R) which in this
case is from 0 to 2.

• r(R) is the rank of R.

The calculation for a binomial coefficient is:

(

n

k

)

=
n!

k! (n − k)!

MAXMEAN uses the lines:

if meann−1
k−1(S[x = 1]) > meann−1

k (S[x = 0]) :
J [x] := 1, k := k − 1, S := S[x = 1]

else:
J [x] := 0, S := S[x = 0]

to make the decision as to whether to set x to 0 or 1. This is called value
ordering.

MAXMEAN* is defined as:

12

maxmean∗(S) :
// max satisfied holds the maximum number of satisfied
// clauses we’ve found so far.
max satisfied := 0

// max J holds the assignment that satisfies the maximum
// number of clauses
max J := empty assignment

loop
J := maxmean(S)
h := satisfied(S, J)

if h > max satisfied :
max satisfied = h
max J = J

else :
exit loop

rename all variables in S which are assigned 1 by max J

end
return max J

where:

• satisfied(S, J) - A function that takes a formula S and an assignment J
and returns the number of satisfied clauses.

The Complexity of Partial Satisfaction II paper notes that “already after one
iteration of the outermost loop of MAXMEAN* the fraction τψ of the clauses
is satisfied by assignment J”.

13

2.3 Homework 3: MAXMEAN APPMEAN

meannk(S) is computationally intensive. However, we can approximate meannk(S)
(where 0 <= k <= n) using appmeanx(S) (where 0 <= x <= 1 and x = k/n).

appmeanx(S) =

m
∑

i=1

tRi
(S) appSAT x(Ri)

appSATx(R) =

r(R)
∑

s=0

qs(R) xs (1 − x)r(R)−s

Intuitively, the computations for meannk(S) have the same structure as appmeanx(S)
where they’re both computing a sum of operations on Ri and tRi

(S).
Plugging in appmeanx(S) for meannk(S), we get:

maxmean appmean(S) :
J := empty assignment

if maxappmeanx(S[x = 1]) > maxappmeanx(S[x = 0]) :
J [x] := 1, S := S[x = 1]

else :
J [x] := 0, S := S[x = 0]

return J

where:

• maxappmeanx(S) - max 0 <= x <= 1appmeanx(S). To figure this out,
you need to find the polynomial for appmeanx(S), take the derivative of
it which gives you a polynomial of degree 2. Then you use the quadratic
formula to find the two points where that polynomial is equal to 0. Then:

maxappmeanx(S) = max















appmeanpoint1(S)
appmeanpoint2(S)
appmean0(S)
appmean1(S)

• the rest of the notation is defined in the same way it is defined in the
MAXMEAN section.

14

